Evaluation of the dehydration performance of zeolite NaA membrane on porous alumina tube by the alumina X-ray diffraction intensity.
نویسندگان
چکیده
A zeolite NaA (A-type zeolite of ca. 0.4 nm pore size; Linde Type A, LTA) membrane for the dehydration of alcohol was characterized by X-ray diffraction analysis (XRD). Also, the relationship between the X-ray absorption and the EtOH/H2O pervaporation (PV) dehydration performance (water selectivity and permeation flux) of the LTA membrane was first investigated. The LTA membranes used here were gel-synthesized hydrothermally on an alumina porous support tube. Since diffraction lines from the alumina generate from a deeper layer than those of the LTA crystal, and are absorbed by both the surface LTA crystal and materials embedded in the alumina porous support, the alumina (113) diffraction line was intensively monitored to estimate the overall X-ray absorption by the LTA membrane. The intensity of the alumina (113) diffraction line showed a good correlation with the PV dehydration performance of the LTA membrane, that is, lower values with the water selectivity and higher values with the permeation flux. The lower diffraction intensity means stronger X-ray absorption by the LTA membrane. The major factor causing the difference in the X-ray absorption is the thickness or quantity of materials embedded in an alumina porous support, rather than those of the surface LTA crystal. These phenomena can be used conveniently (without real PV experiments) to determine the EtOH/H2O PV dehydration performance of the LTA membrane.
منابع مشابه
Grazing incidence x-ray diffraction analysis of zeolite NaA membranes on porous alumina tubes.
Zeolite NaA-type membranes hydrothermally synthesized on porous alumina tubes, for dehydration process, were characterized by grazing incidence 2 theta scan X-ray diffraction analysis (GIXRD). The fine structure of the membrane was studied fractionally for surface layer and for materials embedded in the porous alumina tube. The thickness of the surface layer on the porous alumina tube in the me...
متن کاملEffect of Dehydration Temperature on the H2 Separation Potential of Hydroxy Sodalite Zeolite Membranes
The main goal of this work was to synthesize and evaluate the effect of dehydration temperature on the potential application of hydroxy sodalite zeolite membrane. Hydroxy sodalite zeolite membranes were synthesized via direct hydrothermal method onto a tubular alumina support without seeding in a hot air oven. The synthesized membranes were characterized by X-ray diffraction (XRD) and scanning ...
متن کاملCharacterization of zeolite NaA membrane by FTIR-ATR and its application to the rapid evaluation of dehydration performance.
A zeolite NaA (LTA) membrane supported by an alumina porous support tube was characterized by Fourier Transform Infrared Attenuated Total Reflectance method (FTIR-ATR) with a diamond prism as the waveguide. A method using the FTIR-ATR was developed to estimate rapidly the EtOH/H2O pervaporation (PV) performance of the membrane. The Si-O asymmetric stretching vibration region of LTA membrane spe...
متن کاملEvaluation of fine structure of tubular zeolite NaA membrane by FTIR-ATR and FIB-TEM.
A zeolite NaA (LTA) membrane supported by an alumina porous support tube for pervaporation (PV) dehydration of ethanol was characterized by transmission electron microscopy (TEM) using a focused ion beam (FIB) thin-layer specimen preparation technique and by Fourier transform infrared attenuated total reflectance method (FTIR-ATR) using a diamond prism as the waveguide. FIB-TEM clearly presente...
متن کاملHollow alumina nanospheres as novel catalyst for the conversion of methanol to dimethyl ether
This paper investigates hollow and porous alumina nanospheres that were previously synthesized to be used for the dehydration of methanol to dimethyl ether (DME). As hollow nanostructures possess characteristics such as low density and high surface to volume ratio, their catalytic activity between hollow and porous structure is compared. For this purpose, three most important parameters (acidit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Analytical sciences : the international journal of the Japan Society for Analytical Chemistry
دوره 22 2 شماره
صفحات -
تاریخ انتشار 2006